Johns Hopkins University

Lecturer: Hassan Mohy-ud-Din

ECE 520.435 Digital Signal Processing with MATLAB

September 21, 2011

http://dsp435.wordpress.com

Problem Set 1

Problem 1: Let the sequence $y[n] = [1 \ 2 \ 3 \ 4 \ 5 \ 6]$ with indices [2:1:7]. Graph the following sequences over the range n = -10:1:10 on the same plot.

- 1. y[n-1]
- 2. y[n+2]
- 3. y[1-n]
- 4. y[-3-n]

Problem 2: Given a discrete-time signal $x[n] = \{0 \ 0 \ 1 \ \underline{1} \ 1 \ 1 \ \underline{1} \ \underline{1} \ \underline{1} \}$. Generate and stem the following signals (use *subplots*):

1. x[n-2]2. x[4-n]3. x[n]u[2-n]4. x[-2-n]5. $x[n-1]\delta[n-3]$ 6. $x[n^2]$ 7. x[3n]8. $x[\frac{n}{4}]$

Note: Underline in x[n] means the sample is at n = 0

Problem 3: Write MATLAB scripts which compute linear combinations of unit-step, impulse and ramp functions. Name the function **UnitStep(coeff,index,flip)**, **ImpulseFunc(coeff,index,flip)** and **RampFunc(coeff,index,flip)**. Linear combination means $a_1x[n-k] + a_2x[n-j]$. Generate in MATLAB using these functions:

- 1. $rect[\frac{n}{k}] = u[n + \frac{k}{2}] u[n \frac{k}{2}]$
- 2. $u[n] = \sum_{k=1}^{n} \delta[n-k]$

- 3. 5-cycles of Sawtooth Waveform (*Hint: Use the RampFunc() and repmat()*)
- 4. 5-cycles of Square Waveform (*Hint: Use the rect() from part (1) and repmat()*)

5. $sgn(n) = \begin{cases} -1 & : n < 0\\ 0 & : n = 0.\\ 1 & : n > 0 \end{cases}$ This is known as the signum function. (Hint: Use the Unit-Step())

Problem 4: Use MATLAB to generate the following signals if $\mathbf{x}[\mathbf{n}]=\mathbf{u}[\mathbf{n}]-\mathbf{u}[\mathbf{n}-\mathbf{1}]$ for $0 \le n \le 5$: 1. x[-n]

- 2. x[n+2]
- 3. x[n] + x[-n]
- 4. x[n-2] + x[n+2]
- 5. x[-n-1].x[n]
- 6. x[-n].x[n] + x[-n-1]
- 7. $x[n] + cos(2\pi n + \pi)$

8.
$$x[-n] + \cos(3\pi n + \frac{\pi}{2})$$

9.
$$(0.1)^n x[n] + \cos(3\pi n + \frac{\pi}{2})$$

Problem 5: Use MATLAB to sketch the even and odd parts of the following signals. Repeat it for the decomposition centered around n = 0:

1. $x[n] = u[n] - u[n-1]; \ 0 \le n \le 5$ 2. $x[n] = nu[n]; \ 0 \le n \le 5$ 3. $x[n] = (0.1)^n \cos(2\pi n + 1); \ 0 \le n \le 5$ 4. $y = \cos(2\pi (0:1:16)/16)$

Problem 6: Generate the following signals in MATLAB

1. $x[n] = \{ \dots 5 \ 4 \ 3 \ 2 \ 1 \ \underline{5} \ 4 \ 3 \ 2 \ 1 \ 5 \ 4 \ 3 \ 2 \ 1 \ \dots \}; \ -10 \le n \le 9$ 2. Let $x[n] = \{1 \ -2 \ 4 \ 6 \ \underline{-5} \ 8 \ 10\}$. Stem the signal $y[n] = \sum_{k=1}^{5} nx[n-k]$

Problem 7: Find the following signals if x[n] = nu[n − 1], −∞ < n < ∞.</p>

 x[2n]

2.
$$x[\frac{n}{3}] + x[-n]$$

3. $x[-n]u[n-2] + \delta[n]$
4. $u[\frac{n}{2}] - x[n]$
5. $x[-n-2] + u[n-2]$

Problem 8: Verify the periodicity of the following signals for n > 0 and compute its period graphically.

- 1. $cos[2\pi n + \pi]$ 2. u[n] + 13. $\delta[n] + u[n]$
- 4. $cos[\sqrt{2}\pi n]$
- 5. $u[n] + cos[2\pi n + \pi]$
- 6. $cos[2\pi n + \pi] + \delta[n 1]$
- 7. $cos[\frac{3}{2}n + \pi] + u[n]$

Problem 9: Consider the following signals:

1.
$$x(t) = e^{-3t}u(t)$$

2. $x(t) = e^{-t}cos(1000t)u(t)$

Take samples from both signals every 2sec. Plot x[n] for both.

Appendix

Writing functions in MATLAB is a very simple process. See the following steps:

- On the command window of MATLAB (next to the command prompt) type:
 > edit file_name
 Filename could be any name except one which is also a built-in function e.g. plot, sin, log etc. You can easily verify by typing the following command.
 > help file_name
- 2. A new window will open, called the edit window. Write the following line at the start of the edit window:

function [output_1,output_2,output_3] = file_name(input_1,input_2,input_3) Save the file with the same name as the function name. Type the code, also called the function body, after the afore-mentioned function definition. 3. Terminate the function body by typing at the last line: end

Best of luck with the assignment