

ECE 520.435 Digital Signal Processing with MATLAB

Problem Set 1

Problem 1: Let the sequence $y[n]=\left[\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right.$ 6] with indices $[2: 1: 7]$. Graph the following sequences over the range $n=-10: 1: 10$ on the same plot.

1. $y[n-1]$
2. $y[n+2]$
3. $y[1-n]$
4. $y[-3-n]$

Problem 2: Given a discrete-time signal $x[n]=\left\{\begin{array}{lllllll}0 & 0 & 1 & 1 & 1 & 1 & \frac{1}{2} \\ 2\end{array}\right\}$. Generate and stem the following signals (use subplots):

1. $x[n-2]$
2. $x[4-n]$
3. $x[n] u[2-n]$
4. $x[-2-n]$
5. $x[n-1] \delta[n-3]$
6. $x\left[n^{2}\right]$
7. $x[3 n]$
8. $x\left[\frac{n}{4}\right]$

Note: Underline in $x[n]$ means the sample is at $n=0$
Problem 3: Write MATLAB scripts which compute linear combinations of unit-step, impulse and ramp functions. Name the function UnitStep(coeff,index,flip), ImpulseFunc(coeff,index,flip) and RampFunc(coeff,index,flip). Linear combination means $a_{1} x[n-k]+a_{2} x[n-j]$. Generate in MATLAB using these functions:

1. $\operatorname{rect}\left[\frac{n}{k}\right]=u\left[n+\frac{k}{2}\right]-u\left[n-\frac{k}{2}\right]$
2. $u[n]=\sum_{k=1}^{n} \delta[n-k]$
3. 5-cycles of Sawtooth Waveform (Hint: Use the RampFunc() and repmat())
4. 5-cycles of Square Waveform (Hint: Use the rect() from part (1) and repmat())
5. $\operatorname{sgn}(n)=\left\{\begin{array}{ll}-1 & : n<0 \\ 0 & : n=0 . \\ 1 & : n>0\end{array} \quad\right.$ This is known as the signum function. (Hint: Use the UnitStep())

Problem 4: Use MATLAB to generate the following signals if $\mathbf{x}[\mathbf{n}]=\mathbf{u}[\mathbf{n}]-\mathbf{u}[\mathbf{n} \mathbf{- 1}]$ for $0 \leq n \leq 5$:

1. $x[-n]$
2. $x[n+2]$
3. $x[n]+x[-n]$
4. $x[n-2]+x[n+2]$
5. $x[-n-1] . x[n]$
6. $x[-n] \cdot x[n]+x[-n-1]$
7. $x[n]+\cos (2 \pi n+\pi)$
8. $x[-n]+\cos \left(3 \pi n+\frac{\pi}{2}\right)$
9. $(0.1)^{n} x[n]+\cos \left(3 \pi n+\frac{\pi}{2}\right)$

Problem 5: Use MATLAB to sketch the even and odd parts of the following signals. Repeat it for the decomposition centered around $n=0$:

1. $x[n]=u[n]-u[n-1] ; 0 \leq n \leq 5$
2. $x[n]=n u[n] ; 0 \leq n \leq 5$
3. $x[n]=(0.1)^{n} \cos (2 \pi n+1) ; 0 \leq n \leq 5$
4. $y=\cos (2 \pi(0: 1: 16) / 16)$

Problem 6: Generate the following signals in MATLAB

1. $x[n]=\{\ldots 54321 \underline{5} 432154321 \ldots\} ;-10 \leq n \leq 9$
2. Let $x[n]=\{1-246 \underline{-5} 810\}$. Stem the signal $y[n]=\sum_{k=1}^{5} n x[n-k]$

Problem 7: Find the following signals if $x[n]=n u[n-1],-\infty<n<\infty$.

1. $x[2 n]$
2. $x\left[\frac{n}{3}\right]+x[-n]$
3. $x[-n] u[n-2]+\delta[n]$
4. $u\left[\frac{n}{2}\right]-x[n]$
5. $x[-n-2]+u[n-2]$

Problem 8: Verify the periodicity of the following signals for $n>0$ and compute its period graphically.

1. $\cos [2 \pi n+\pi]$
2. $u[n]+1$
3. $\delta[n]+u[n]$
4. $\cos [\sqrt{2} \pi n]$
5. $u[n]+\cos [2 \pi n+\pi]$
6. $\cos [2 \pi n+\pi]+\delta[n-1]$
7. $\cos \left[\frac{3}{2} n+\pi\right]+u[n]$

Problem 9: Consider the following signals:

1. $x(t)=e^{-3 t} u(t)$
2. $x(t)=e^{-t} \cos (1000 t) u(t)$

Take samples from both signals every $2 s e c$. Plot $x[n]$ for both.

Appendix

Writing functions in MATLAB is a very simple process. See the following steps:

1. On the command window of MATLAB (next to the command prompt) type:
\gg edit file_name
Filename could be any name except one which is also a built-in function e.g. plot, sin, log etc. You can easily verify by typing the following command.
>> help file_name
2. A new window will open, called the edit window. Write the following line at the start of the edit window:
function [output_1,output_2,output_3] = file_name(input_1,input_2,input_3)
Save the file with the same name as the function name. Type the code, also called the function body, after the afore-mentioned function definition.
3. Terminate the function body by typing at the last line: end

Best of luck with the assignment

